Some Worked Examples in Part II Tripos

GR

Preliminary. Some of the following examples concern the Schwarzschild Lagrangian in the
equatorial plane 6 = 7 is

(1 _Ts\ 25 CTs\Tha 2o
L= (1 7’>Ct —|—<1 r> 7+ (1)
with first integrals
. Ty FE
i(t-3) = 2 @
r’¢ = h 3)

Substituting (2) and (3) in L = k where constant k = —c?, 0, or 1 depending on the nature of

the geodesic, we obtain

1, E
TV =55 (4)

where 2V (r) = (1 — ) (—k + if—;)

Circular orbits (S2Q2)

Differentiating (4) gives ©* + V'(r) = 0, so a circular orbit possibly exists at » = 7, where
V(ro) = 5 and
V'(ro) = 0. ()

By substituting perturbation r = ¢+ ¢ into (4) and using V' (r) = V' (ro) + %V” (r9), we obtain
after differentiating

E+V"(rg)e=0
so for stability we must have V" (r() > 0.

Solving (5) gives

so a circular orbit is possible only for ry > %7"5.

Requiring stability or instability V"(rg) = 0 means % < 0.
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Perihelion precession (§2.8)

With k = —c%, u = % and % = 925% = huQ% from (3), upon differentiating with respect to ¢,

equation (4) gives
1 3
W' +u= 7t §rsu2 (6)

2 .
where | = 2 and T lis assumed.

TsC

The first order solution is the Kepler orbit (r; = 0)

_l+ecoso
-

Ug

where 0 < e < 1 for bound orbits.

Substituting higher order solutions u = uy + %u; + O (%)2 into (6) gives

3l Ts
3 1 1

~ — | 14 =e24+=e7cos2¢p + 2ecos ¢
21 2 N

VT - resonance
small 27r—periodic motion

Considering the non-periodic solution to the resonance term, we obtain u; = %gb sin ¢, hence

1 e 37"3 .
u 7+j(cos¢+2—l¢sm¢)
1 e 37,
~ 7+1COS<¢— 21¢>

3rs
2l

so perihelion advances by 27 <= radians per orbit.

Deflection of light (§2.9)

Withk =0, u = % and % = qu% = husz from (3), upon differentiating with respect to ¢,
equation (4) gives

3
'+ u= —rsu2
2

(7)

with first order solution (r, = 0) u = % sin ¢ where b is the distance of closest approach in the
absence of the gravitational field.

Substituting higher order solutions u = ug + 2u; + O (%)2 into (7) gives

3
" —_ 1 _ 2
uy +uy 4b( cos 2¢)
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whence

TS TS
@(3 + cos2¢) + ®

——
particular solution complementary solution

sou — 0as ¢ — m. As ¢ — —A¢p where A¢ is the small angle of deflection, v — 0 so

1
u:gsinqb—i- cos ¢

Ao 2r
V== %

giving A¢ ~ =

Deflection of massive objects (S2Q4)

Equation (6) applies substitution of u = ug + euy + O(€?) ~ 7 sin ¢ + eu, yields

//+ TSCQ + (1 : ¢+ )2
Eu EU1 = —Tgl — SIn €U

! P oopz T oYy !
~—

~be
SO
n bc? n 3 sin?
U U] = —— + —sin
LEH T op2 Ty
giving a solution
2
U:ESIHQb—FE 2—h2—|—@(

1 bc?
3+ cos2¢) + (E + 2_h2) cos ¢

v~

complementary solution

such that u — 0 as ¢ — 7. As ¢ — —A¢ where A¢ is the small angle of deflection, u — 0 so

A 1 bc?
0——7”6(5*@)
.o . 202
giving A¢ ~ 2¢ (1 + %)

Killing vector fields (S3Q4 and S3Q8)
Consider an isometry x — y under which ds? is invariant:

oy® Oyb
Frw i Ged(T) (8)
oy _

c

ox¢
(8)

gab(y)

so writing y* = x® + e£*(x), whence

we have by comparing O(¢) terms in

¢ + e and gap(y) = gan () + €gap,£°(7) + 0(e€)

écgab,c + gcbgc,a + gcagc,b =0
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which in local inertial coordinates, or upon direct computation, reduces to the Killing equation
gb;a + fa;b =0.
Now first consider R ., = 0 = R, = 0 but by Bianchi’s first identity R“[bcd} =0so

Rdacb + Rd + Rdcba =0. (9)

bac

By the Ricci identity .50 — Eciab = —Rdmbfd o)

é[a;bc] = = (ga;bc - ga;cb + gb;ca - gb;ac + gc;ab - éc;ba)

(_Rdacb - R, — Rdcba) &a

bac

S|~ =

by (9).

Mixed Symmetry of the Riemann Tensor (S3Q6 or §3.9)

In local inertial coordinates

0= (gabgbc) 4= gbcgab,d = gab,c =0

and thus

a 1 ae
I be,d — 59 (gbe,cd + Gee,pd — gbc,ed) .

Hence

e
Rabcd = gaeR bed

= Jae (Febd,c - Febc,d)
1

= 5 (Gdabe — God,ac + Geabd — Gbe,ad)

— Rcdab

by symmetry of partial derivatives and the metric tensor.

w
Rayleigh waves (§3.2.6)

This is a combination of self-sustained P and SV waves at the boundary.
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Ansatz are
i(k w? . R
p = Ael( x_wt)+06y’ o= k2 — g’ kp — kx — ZO{y
P
. 2
b = Bacreotin g o g2 o 2k = k- iy
b 2
=>u = (i/{JAeo‘y + ﬁBeﬁy, ade™ — ikBeﬁy) pi(kz—wt)
subject to boundary conditions ¢,, = 0,, = 0 so eliminating A, B yields the dispersion
relation.

Love waves (§4.1.2)

This is an SH wave trapped in a layer between z = 0 (medium interface) and z = h (free
surface), so seek a solution
u= (0, 1, 0)f(z)e'"e"

which must satisfy the wave equation so

_ JAcos[mi(h—2)] 0<z<h
fz) = {Bem” 2 <0

where respectively
1

m=k(5-1)" 0<z<h

1

1
m2:k<1—z—>2 2z <0

where ¢; < ¢ < ¢s.

Now continuity of displacement and stress requires that u|* = pg—;‘ t = 0 at z = 0, which
gives the dispersion relation.

Waves approaching a beach (§5.1.7)

Omitted, but you should be familiar with this example. The key is that some components of
the wave-vector are constant, and so is the local frequency, from which k(x) is determined by

h(zx).

Mach cones (§5.3.3)
With U = (Mc¢y, 0, 0), the dispersion relation becomes
ws = cok — U -k = k(1 — M cos ¢)

where ¢ is the angle between U and k.
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Steady waves are possible when ¢ = arccos M’ which implies

k= (cos ¢, sing, 0) = (%, <1 — %)2 ,0)

Cys = cok — U = ¢ov/M? — 1(—sin ¢, cos ¢).

and

Noting that ¢, - U < 0 and cg - k = 0, we deduce there are steady waves in a cone with
semi-angle

« = arcsin cos ¢ = arcsin W
Ship/duck waves (§5.3.4)
Taking U = (U, 0, 0) and k = k(cos ¢, 0, sin ¢), the dispersion relation becomes
(W) + U-Kk)* = gk

so solving for

Q(ky, k3) = £/ gk — Uk cos ¢

1 N
Cys = iﬁ\/%k - U.
Ucosop = i\/%

SO Cy = %(cos2 ¢ —2,0, singpcos¢)and ¢, -x < 0. Besides, {2, = 0 and V42 = 0 so rays are
straight.

gives

Steady waves require

On such rays let

dz
==t
. an
then by ray-tracing equations
o __(c)e _ tand
tany = oj = B2 5
5 (Cg)e 1+2tan’¢

Y _

So solving 6tan¢

0 yields the maximum angle

tan || = —=
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Now 0 =k - x = krcos(m — 1) — @) = —kr<=¥ (é) hence

cos¢ \ 1+2tan? ¢

r = —rcosy

z = —xtany

gives an parametric description in terms of (6, ¢).

FD II
Flow past a sphere (§4.2 and S2Q6) and the rise of a spherical bubble (§7.8)
By linearity and spherical symmetry

u = Uf(r)+x(U-x)g(r)
= pu(U-x)h(r)

so substitution into incompressibility condition and the Stokes equation yields, after much

algebra,
/ !/ 6 / h/
—+49+rg =0, f”+2£+2g:handg”+—g:—.
r r r r

Eliminating f, h gives an equidimensional equation for g,
r2g" +11rg” +24¢ = 0

with solutions f = —25r**2, g = r* and h = —(a + 5)(a + 2)r* where o = 0, =3, —5.

Hence the general solution is
1
u = U (—2Ar2 +B+Crt — gDr3> +x(U-x) (A+Cr?+Dr)
p = p(U-x)(—104+2Cr~?)
c-u = U(=3Ar+2Dr ") +x(U-x) (94r~" —6Cr~* — 6Dr )

and with imposed boundary condition on a sphere, we have

A=0, B=1, C’:—%a and D:za3

with drag force on the sphere
/ o-ndS = 6ruaU;

and on a bubble, a
A=0, B=1, ,C:—§andD:0

with drag force on the bubble
/ o-ndS = 4rual.
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For the latter, u = —%U + %X (U-x)and u-n = U - n, with dissipation calculated (after
much algebra) to be 12mpaU?.

Flow in a corner (§4.4 and S2Q8)

For a Stokes flow, w is harmonic and w = (0, 0, —V?%) so
202 2 1 L ’
VIV =0, +-0,+ 05| v=0
r r

solved by a power law relation ¢ = r* f(¢):
d? d?
() [ ] o

where boundary conditions must be satisfied, thus determining A and f.

To calculate the pressure, it is most convenient to employ the Stokes equation, written in the
form

vg:quzwv-u)—vaXu:—ng.

You may find there is a log-type singularity in pressure, because of a perfectly sharp corner at
r = 0. But in reality this is impossible; on the other hand, such singularity is integrable so all
forces remain finite.

In the far field pressure and velocity become unbounded, because the Stokes approximation
no longer holds, and the inertial terms are not negligible.

Gravitational spreading of droplets (§5.6 and S3Q4)

General remarks. A common trick used in thin layer flows/lubrication theory is to integrate the
incompressibility condition with appropriate boundary conditions to show the volume flux,
or some other quantity, is conserved.

2-d case (S3Q4).

Have governing equations

op 0%u
ox oy
dp
0 = oy Y
subject to boundary conditions
ou
ey 0’ R = 0 d _ fr
u|y:0 ay y:h an p|y_h pO
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giving p = po + pg(h — y) and thus % = pgg—z, and thus
Ou _ pg 0h
oy Ox

from which u and () can be calculated in terms of %.

By conservation of mass,

Oh

—adx = Q(z+dz) — Q(x)

which yields a partial differential equation for h(zx, t).

By conservation of volume V = [ fa h(z, t)dx and scale relation V' = Ha, we could now seek
a similarity solution

W, t) = H(t)F(5).

3-d case (§5.6).

Have governing equations

Op 0%u
or 0z
dp
0 5, P9
subject to boundary conditions
ou
ul,_q =0, % » =0and p|,_, =po

giving p = py + pg(h — z) and thus % = pg%, and thus

O’u _ pgOh
022 Or
from which u and @) can be calculated in terms of %.
By conservation of mass,
oh

9,
Z9 or e =
B mrQ(r) + 2mr T 0

which yields a partial differential equation for A(r, t).

By conservation of volume V' = foa 2mrh(r, t)dr and scale relation V' = Ha?, we could now
seek a similarity solution

h(x, t) = H(t)f(@)-

2-d momentum jets (§7.4)

The key is to find a conserved quantity, in this case the momentum flux, so as to give a con-
straint on the layer thickness §(z) and the typical speed U (), and provide a boundary condi-
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tion.

The trick is re-use the boundary layer equation when differentiating the momentum flux in
order to show it is conserved. For more details please see the lecture notes.
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