
Some Worked Examples in Part II Tripos

GR

Preliminary. Some of the following examples concern the Schwarzschild Lagrangian in the
equatorial plane θ = π

2
is

L = −
(

1− rs
r

)
c2ṫ2 +

(
1− rs

r

)−1
ṙ2 + r2φ̇2 (1)

with �rst integrals

ṫ
(

1− rs
r

)
=

E

c2
(2)

r2φ̇ = h. (3)

Substituting (2) and (3) in L = k where constant k = −c2, 0, or 1 depending on the nature of
the geodesic, we obtain

1

2
ṙ2 + V (r) =

E

2c2
(4)

where 2V (r) =
(
1− rs

r

) (
−k + h2

r2

)
.

Circular orbits (S2Q2)

Di�erentiating (4) gives r̈ + V ′(r) = 0, so a circular orbit possibly exists at r = r0 where
V (r0) = E

2c2
and

V ′(r0) = 0. (5)

By substituting perturbation r = r0+ε into (4) and using V (r) ≈ V (r0)+ ε2

2
V ′′(r0), we obtain

after di�erentiating
ε̈+ V ′′(r0)ε = 0

so for stability we must have V ′′(r0) > 0.
Solving (5) gives

h

c
=

r0√
2r0
rs
− 3

so a circular orbit is possible only for r0 > 3
2
rs.

Requiring stability or instability V ′′(r0) ≷ 0 means 3rs−r0
2r0−3rs ≶ 0.
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Perihelion precession (§2.8)

With k = −c2, u = 1
r

and d
dτ

= φ̇ d
dφ

= hu2 d
dφ

from (3), upon di�erentiating with respect to φ,
equation (4) gives

u′′ + u =
1

l
+

3

2
rsu

2 (6)

where l = 2h2

rsc2
, and rs

l
� 1 is assumed.

The �rst order solution is the Kepler orbit (rs = 0)

u0 =
1 + e cosφ

l

where 0 6 e < 1 for bound orbits.

Substituting higher order solutions u = u0 + rs
l
u1 +O

(
rs
l

)2 into (6) gives

u′′1 + u1 =
3l

2
u20 +O

(rs
l

)

≈ 3

2l

�����������

1 +
1

2
e2 +

1

2
e2 cos 2φ︸ ︷︷ ︸

small 2π−periodic motion

+ 2e cosφ︸ ︷︷ ︸
resonance

 .

Considering the non-periodic solution to the resonance term, we obtain u1 = 3e
2l
φ sinφ, hence

u ' 1

l
+
e

l

(
cosφ+

3rs
2l
φ sinφ

)
' 1

l
+
e

l
cos

(
φ− 3rs

2l
φ

)
so perihelion advances by 2π 3rs

2l
radians per orbit.

De�ection of light (§2.9)

With k = 0, u = 1
r

and d
dτ

= φ̇ d
dφ

= hu2 d
dφ

from (3), upon di�erentiating with respect to φ,
equation (4) gives

u′′ + u =
3

2
rsu

2 (7)

with �rst order solution (rs = 0) u = 1
b

sinφ where b is the distance of closest approach in the
absence of the gravitational �eld.

Substituting higher order solutions u = u0 + rs
b
u1 +O

(
rs
b

)2 into (7) gives

u′′1 + u1 =
3

4b
(1− cos 2φ)
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whence
u =

1

b
sinφ+

rs
4b2

(3 + cos 2φ)︸ ︷︷ ︸
particular solution

+
rs
b2

cosφ︸ ︷︷ ︸
complementary solution

so u→ 0 as φ→ π. As φ→ −∆φ where ∆φ is the small angle of de�ection, u→ 0 so

0 ' −∆φ

b
+

2rs
b2

giving ∆φ ≈ 2rs
b

.

De�ection of massive objects (S2Q4)

Equation (6) applies substitution of u = u0 + εu1 +O(ε2) ≈ 1
b

sinφ+ εu1 yields

εu′′1 + εu1 =
rsc

2

2h2︸︷︷︸
∼bε

+
3

2
rs(

1

b
sinφ+ εu1)

2

so
u′′1 + u1 =

bc2

2h2
+

3

2b
sin2 φ

giving a solution

u =
1

b
sinφ+ ε

 bc22h2
+

1

4b
(3 + cos 2φ) +

(
1

b
+
bc2

2h2

)
cosφ︸ ︷︷ ︸

complementary solution


such that u→ 0 as φ→ π. As φ→ −∆φ where ∆φ is the small angle of de�ection, u→ 0 so

0 ' −∆φ

b
+ 2ε

(
1

b
+
bc2

2h2

)

giving ∆φ ≈ 2ε
(

1 + b2c2

2h2

)
.

Killing vector �elds (S3Q4 and S3Q8)

Consider an isometry x 7→ y under which ds2 is invariant:

gab(y)
∂ya

∂xc
∂yb

∂xd
= gcd(x) (8)

so writing ya = xa + εξa(x), whence ∂ya

∂xc
= δac + εξa,c and gab(y) = gab(x) + εgab,cξ

c(x) + o(ε),
we have by comparing O(ε) terms in (8)

ξcgab,c + gcbξ
c
,a + gcaξ

c
,b = 0
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which in local inertial coordinates, or upon direct computation, reduces to the Killing equation

ξb;a + ξa;b = 0.

Now �rst consider Ra
b(cd) = 0⇒ Ra

(bcd) = 0 but by Bianchi’s �rst identity Ra
[bcd] = 0 so

Rd
acb +Rd

bac +Rd
cba = 0. (9)

By the Ricci identity ξc;ba − ξc;ab = −Rd
cabξd so

ξ[a;bc] =
1

6
(ξa;bc − ξa;cb + ξb;ca − ξb;ac + ξc;ab − ξc;ba)

=
1

6

(
−Rd

acb −Rd
bac −Rd

cba

)
ξd

= 0

by (9).

Mixed Symmetry of the Riemann Tensor (S3Q6 or §3.9)

In local inertial coordinates

0 =
(
gabgbc

)
,d

= gbcg
ab
,d ⇒ gab,c = 0

and thus
Γa bc,d =

1

2
gae (gbe,cd + gce,bd − gbc,ed) .

Hence

Rabcd = gaeR
e
bcd

= gae
(
Γebd,c − Γebc,d

)
=

1

2
(gda,bc − gbd,ac + gca,bd − gbc,ad)

= Rcdab

by symmetry of partial derivatives and the metric tensor.

W

Rayleigh waves (§3.2.6)

This is a combination of self-sustained P and SV waves at the boundary.
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Ansätz are

ϕ = Aei(kx−ωt)+αy, α =

√
k2 − ω2

c2p
, kp = kx̂− iαŷ

ψ = Bẑei(kx−ωt)+βy, β =

√
k2 − ω2

c2s
, ks = kx̂− iβŷ

⇒ u =
(
ikAeαy + βBeβy, αAeαy − ikBeβy

)
ei(kx−ωt)

subject to boundary conditions σxy = σyy = 0 so eliminating A, B yields the dispersion
relation.

Love waves (§4.1.2)

This is an SH wave trapped in a layer between z = 0 (medium interface) and z = h (free
surface), so seek a solution

u = (0, 1, 0)f(z)ei(kx−ωt)

which must satisfy the wave equation so

f(z) =

{
A cos [m1(h− z)] 0 < z < h

Bem2z z < 0

where respectively m1 = k
(
c2

c21
− 1
) 1

2
0 < z < h

m2 = k
(

1− c2

c22

) 1
2

z < 0

where c1 < c < c2.

Now continuity of displacement and stress requires that u|+− = µ∂u
∂z

∣∣+
− = 0 at z = 0, which

gives the dispersion relation.

Waves approaching a beach (§5.1.7)

Omitted, but you should be familiar with this example. The key is that some components of
the wave-vector are constant, and so is the local frequency, from which k(x) is determined by
h(x).

Mach cones (§5.3.3)

With U = (Mc0, 0, 0), the dispersion relation becomes

ωs = c0k −U · k = c0k(1−M cosφ)

where φ is the angle between U and k.
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Steady waves are possible when φ = arccos 1
M

, which implies

k̂ = (cosφ, sinφ, 0) =

(
1

M
,

(
1− 1

M2

) 1
2

, 0

)

and
cgs = c0k̂−U = c0

√
M2 − 1(− sinφ, cosφ).

Noting that cgs · U < 0 and cgs · k̂ = 0, we deduce there are steady waves in a cone with
semi-angle

α = arcsin cosφ = arcsin
1

M
.

Ship/duck waves (§5.3.4)

Taking U = (U, 0, 0) and k = k(cosφ, 0, sinφ), the dispersion relation becomes(
ω(s) + U · k

)2
= gk

so solving for
ω = Ω(k1, k3) = ±

√
gk − Uk cosφ

gives

cgs = ±1

2

√
g

k
ˆk−U.

Steady waves require

U cosφ = ±
√
g

k

so cg = U
2

(cos2 φ− 2, 0, sinφ cosφ) and cg · x̂ < 0. Besides, Ωt = 0 and∇xΩ = 0 so rays are
straight.

On such rays let
dz

dx
= − tanψ

then by ray-tracing equations

tanψ = −
∂ω
∂k3
∂ω
∂k1

= − (cg)z
(cg)x

=
tanφ

1 + 2 tan2 φ
.

So solving ∂ tanψ
∂ tanφ

= 0 yields the maximum angle

tan |ψ| = 1

2
√

2
.
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Now θ = k · x = kr cos(π − ψ − φ) = −kr cosψ
cosφ

(
1

1+2 tan2 φ

)
, hence

x = −r cosψ

z = −x tanψ

gives an parametric description in terms of (θ, φ).

FD II

Flow past a sphere (§4.2 and S2Q6) and the rise of a spherical bubble (§7.8)

By linearity and spherical symmetry

u = Uf(r) + x (U · x) g(r)

p = µ(U · x)h(r)

so substitution into incompressibility condition and the Stokes equation yields, after much
algebra,

f ′

r
+ 4g + rg′ = 0, f ′′ + 2

f ′

r
+ 2g = h and g′′ +

6g′

r
=
h′

r
.

Eliminating f, h gives an equidimensional equation for g,

r2g′′′ + 11rg′′ + 24g′ = 0

with solutions f = −α+4
α+2

rα+2, g = rα and h = −(α + 5)(α + 2)rα where α = 0, −3, −5.

Hence the general solution is

u = U

(
−2Ar2 +B + Cr−1 − 1

3
Dr−3

)
+ x (U · x)

(
A+ Cr−3 +Dr−5

)
p = µ(U · x)

(
−10A+ 2Cr−3

)
σ · u = U

(
−3Ar + 2Dr−4

)
+ x (U · x)

(
9Ar−1 − 6Cr−4 − 6Dr−6

)
and with imposed boundary condition on a sphere, we have

A = 0, B = 1, C = −3

4
a and D =

3

4
a3

with drag force on the sphere ˆ
r=a

σ · ndS = 6πµaU;

and on a bubble,
A = 0, B = 1, , C = −a

2
and D = 0

with drag force on the bubble ˆ
r=a

σ · ndS = 4πµaU.

7
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For the latter, u = − a3

2r3
U + 3a3

2r5
x (U · x) and u · n = U · n, with dissipation calculated (after

much algebra) to be 12πµaU2.

Flow in a corner (§4.4 and S2Q8)

For a Stokes �ow, ω is harmonic and ω = (0, 0, −∇2ψ) so

∇2∇2ψ =

(
∂2r +

1

r
∂r +

1

r2
∂2φ

)2

ψ = 0

solved by a power law relation ψ = rλf(φ):

rλ−4
(
d2

dφ2
+ λ2

)[
d2

dφ2
+ (λ− 2)2

]
f = 0

where boundary conditions must be satis�ed, thus determining λ and f .

To calculate the pressure, it is most convenient to employ the Stokes equation, written in the
form

∇ p
µ

= ∇2u = ∇(∇ · u)−∇×∇× u = −∇× ω.

You may �nd there is a log-type singularity in pressure, because of a perfectly sharp corner at
r = 0. But in reality this is impossible; on the other hand, such singularity is integrable so all
forces remain �nite.

In the far �eld pressure and velocity become unbounded, because the Stokes approximation
no longer holds, and the inertial terms are not negligible.

Gravitational spreading of droplets (§5.6 and S3Q4)

General remarks. A common trick used in thin layer �ows/lubrication theory is to integrate the
incompressibility condition with appropriate boundary conditions to show the volume �ux,
or some other quantity, is conserved.

2-d case (S3Q4).

Have governing equations

∂p

∂x
= µ

∂2u

∂y2

0 = −∂p
∂y
− ρg

subject to boundary conditions

u|y=0 = 0,
∂u

∂y

∣∣∣∣
y=h

= 0 and p|y=h = p0
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giving p = p0 + ρg(h− y) and thus ∂p
∂x

= ρg ∂h
∂x

, and thus

∂2u

∂y2
=
ρg

µ

∂h

∂x

from which u and Q can be calculated in terms of ∂h
∂x

.

By conservation of mass,
−∂h
∂t
dx = Q(x+ dx)−Q(x)

which yields a partial di�erential equation for h(x, t).

By conservation of volume V =
´ a
−a h(x, t)dx and scale relation V = Ha, we could now seek

a similarity solution
h(x, t) = H(t)f(

x

a
).

3-d case (§5.6).

Have governing equations

∂p

∂r
= µ

∂2u

∂z2

0 = −∂p
∂z
− ρg

subject to boundary conditions

u|z=0 = 0,
∂u

∂z

∣∣∣∣
z=h

= 0 and p|z=h = p0

giving p = p0 + ρg(h− z) and thus ∂p
∂r

= ρg ∂h
∂r

, and thus

∂2u

∂z2
=
ρg

µ

∂h

∂r

from which u and Q can be calculated in terms of ∂h
∂r

.

By conservation of mass,
∂

∂r
2πrQ(r) + 2πr

∂h

∂t
= 0

which yields a partial di�erential equation for h(r, t).

By conservation of volume V =
´ a
0

2πrh(r, t)dr and scale relation V = Ha2, we could now
seek a similarity solution

h(x, t) = H(t)f(
r

a(t)
).

2-d momentum jets (§7.4)

The key is to �nd a conserved quantity, in this case the momentum �ux, so as to give a con-
straint on the layer thickness δ(x) and the typical speed U(x), and provide a boundary condi-
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tion.

The trick is re-use the boundary layer equation when di�erentiating the momentum �ux in
order to show it is conserved. For more details please see the lecture notes.
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